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ABSTRACT

A number of simple models of diffusion electrodes are examined

theoretically. The results are expressed in forms whereby it should

be possible to test the models experimentally, and make predictions

regarding the effects of variation of the pertinent parameters.

It is not expected that the theories will completely explain

operating data on complex electrode structures. It should be possible

to test them, however, on experimental equipment designed to approximate

to the models chosen.



(1) INTRODUCTION

Although primary and secondary cells have employed porous electrodes for

many years, there appears to have been little work on describing the exact influence

of the porosity. Presumably this is due to the complex nature of the electrochemical

reactions in such cells and the difficulty of describing paste electrodes. The

recent surge of interest in fuel cells has led to increased study of porous

electrodes, with some hopes of applying reasonably exact mathematical treatments.

Fuel cell electrodes are usually hard and solid and retain their configuration

during operation, since they serve to provide catalytic reaction surface rather

than to provide storage of reactant. Justi et al. (1) have presented a limited

analysis of porous fuel cell electrodes. A similar analysis was performed inde-

pendently by Austin (2). This analysis is incorporated into this report since it

forms the basis for more detailed treatments. Stender and Ksenzhak (3) have

discussed the limiting case where polarization is due solely to ohmic effects

within the electrolytein the pores :of the electrode and no depletion of reactant

occurs in the electrolyte. We will show that this case is only rarely appli-

cable. The transient case, which is difficult to analyze when appreciable amovits

of reactant are adsorbed on the surface, has been crudely treated by Uhrbach (4)

A number of other workers (5-12) have presented studies of various porous systems,

but since the work is as yet available only in abstract form, it is not possible

to critically analyze their findings (although reference to their presentations

will be made in this report).

One of the difficulties in describing the mode of operation of diffusion

electrodes is that the complexity of the systems leads to final solutions which

contain several parameters in "awkward" algebraic forms. Thus it is conceivable

that by suitable selection of the values of the parameters, several different

theories can be made to fit a given set of experimental results. In order to

test certain assumptions, it is valuable to consider simple redox reactions at

porous electrodes; the reactions have fairly well defined kinetics and a two phase
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system results. Theories can be relatively easily checked for such cases.

The concepts can then be extended to three phase gas diffusion electrodes

with more certainty after they have been proved correct for the simpler

systems.

In general, we are looking for a model (or models) of a porous

electrode which will satisfy two requirements. It must be sufficiently

rigorous to explain quantitatively experimental results from a simple

system, for example, a single pore of known radius and length. In

addition, it must be general enough to explain qualitatively the behaviour

of complex systems such as sintered, double layer structure, Raney electrodes

(13) or carbon electrodes. It is, of course, possible to write differential

equations covering every conceivable factor affecting the results. It is

also possible, in theory, to solve the equatigns numerically using a digital

computer. But we are likely to end up with solutions which have so many

unknown parameters that they can be used to fit any set of experimental

results. It is my opinion that the better way to approach the problem is

to start with the simplest possible models, solve the equations, and perform

experimental work specifically aimed at testing the models. By examining

the problem at several simplified limiting conditions, it is often possible

to show that a particular effect is usually negligible. It is also my

opinion that fairly lengthy explanations of the methods of setting up the

differential equations are not superfluous. The equations and their

solutions may be valuable to people who have not had much experience in

writing down these equations, and the extra space used in describing the

meaning of the equations is not wasted.

(2) PHYSICAL DESCRIPTION OF ELECTRODES

Several simplifying assumptions must be made about the structure

of porous electrodes before it is possible to apply simple equations. These

assumptions may not be completely true, but they are necessary to form a

model amenable to treatment. For example, it is not generally possible to

get a porous electrode which is perfectly homogenous in pore size. A

pt
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small pore will have a greater surface area to cross-sectional area ratio

than a larger pore, If both pores are held at the same polarization so

that current per unit area is the same, and reactant allowed to diffuse

in at one end of the pore, the smaller pore must diffuse in a proportional-

iy greater amount of reactant per unit cross-sectional area than the large

pore. Consequently, the concentration of reactant will fall off more

rapidly with distance from the entrance mouth for the small pore. A

bundle of parallel tubes of varying diameter could be used as a porous

electrode. Theoretical equations for current density versus polarization

for each pore could be obtained and using the common boundary conditions

of uniform concentration and polarization at the pore mouths, the sum

effect could be found, providing the size/number distribution was known.

Ohmic potential gradients and concentration gradients 'within the electro-

lyte in the pores) would vary with each pore. However, if one examines

a porous carbon or sintered metal electrode under a microscope it is

apparent that this model is not adequate. These structures are spongelike,

with the pore spaces interlinked in many directions. Any variation of

concentration gradient, or electrolyte potential gradient, existing along

two different size pores will tend to even out by lateral mass transport
through the inter-linking connections of the pores. This discussion leads
to the first assumption. It will be assumed that the pores are so highly

inter-linked that the potential and concentration at any given penetration into

the electrode are constant. This is probably a good approximation for well

constructed electrodes. An electrode with a crack (or large pin-holes)

through it, on the other hand, will behave somewhere in between the extremes

of completely interlinked pores and discrete tube bundles.

Another assumption is that, in general, a porous electrode has a macro-

porosity and a microporosity. The macroporosity is the space between particles

or material which can be observed under an optical microscope. Microporosity

is very fine porosity existing within or on the surface of the large material.

For example, in a baked porous electrode carbon, the microporosity is made up

of inter!cryptallite, voids in the filler and fine channels or bubbles in the
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carbonized binder. For a platinized platinum electrode, the voids between

the base platinum particles form macroporosity, while the fine surface

porosity of the platinized layer is the microporosity. In Raney metal

electrodes, the microporosity is the fine pore structure within the

particles, produced by dissolution of the soluble alloying component.

The macroporosity can be considered as having a definite cross-sectional

area and geometric perimeter at any cross-section of the electrode. Normal-

ly, the microporosity represents only a few per cent or less of the total

empty volume and we may equate macroporosity to C, the total porosity. The

total perimeter area of the macroporosity represents the area through which

mass transport to the reacting surfaces can occur, and may be denoted by A

cm per cm3 of electrode. The total area for reaction, S cm per cm3 say,

can be considered as A times a roughness factor f,

S = Af cm2 cm
-3  ()

f is all the area associated with unit geometric macroporous area A. For

completely smooth particles (or tubes), with no microporosity, f = 1. For

a particle with highly developed interior or surface area, f will be large.

Another assumption made is that the conductivity of the electrode

material is large compared to the conductivity in the electrolyte. For

small experimental electrodes, ohmic effects within the electrode material

will be neglected.

It will also be assumed that the electrodes investigated will be plane

electrodes, with uniform current density in the external electrolyte and

negligible edge effects.

(3) REDOX SYSTEMS (TWO PHASE SYSTEMS)

3.1. General Discussion

In the consideration of redox reactions at a porous electrode

the problem is simplified since we need consider only transport in the

electrolyte phase. It is assumed that any surface intermediate is present

in small quantities (e -4 o, where e is the fractional surface coverage).

The activity of bare surface, 1-e, is, therefore, close to I and can be taken

as constant over a wide voltage range. The rate equation can be expressed as
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(14),

R an IFij/RT P - (-a)n 1Fr/RT
ii-ii Ri e -- e ) (2)

0 Ri

i is current density, i0 is the exchange current density for concentrations

(activities) of reactant and product of Ri, Pi, respectively. rj is the
difference between the ideal reversible double layer potential for concen-

trations Ri, P, and the actual double layer potential, therefore it repre-

sents the sum. effect of activation and concentration polarization. Even

for redox reactions, equation 2 is not the only form of rate equation which

may be applicable (see 4.5 later), but it forms a good starting point in

the lack of definite knowledge of a particular reaction. It assumes that

the solutions considered are concentrated enough to render diffuse double

layer effects small and that R and P are the actual reactant and product

for the slow step in the reaction (or have a simple equilibrium relation

with the actual reactant and product).

3.2 Rates of Mass Transport

Let us consider a simple anodic redox system such as

RZ+ electrode p(Z+n)+ + ne (3)

Associated with the cations will be the corresponding anions, and at steady

state, the law of neutrality requires that each step in equation 3 must be

accompanied by n charge transfer in the electrolyte between the electrodes.

Each cation charge in the electrolyte must be balanced by a corresponding

anion charge. For a steady state condition in which R is being linearly

transported to the electrode and equimolar amounts of P are being transport-

ed away, the mass transport equations for a stationary system can be

approximated as follows. Let Dobe diffusion coefficient, V voltage in the

electrolyte and x distance from the electrode face. Let R be concentration

of reactant, P be concentration of product and let A be the concentration

of anion with a valence charge of ZA. If the mass transport effects are
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such that different parts of the electrolyte contain different totals of

R, P and A then clearly the amount of water present per unit volume is

different.* A water diffusion gradient exists and at steady state this

must be balanced by an equal but opposite flow of water, that is

D HodC/dx - CD (4)

C is the concentration of water and D is the bulk flow velocity in the

opposite direction to the diffusional effect. This bulk flow will also

carry R, P and A with it. Whether or not this bulk flow significantly

affects the transport of the other constituents, R for example, depends

on the relative magnitudes of D dR/dx and RD. The magnitude of D dR/dx

will be roughly equal to that of DH odC/dx, therefore, from equation 4H2
the effect depends on the relative magnitudes of R and C. It will be

assumed that R(and P, A)are so small compared to C that the bulk flow

of water carries only a small fraction of the total mass transport of

the constituentsother than water. This will be a fairly good approxi-

mation even up to concentration changes of several moles per litre.

It will also be assumed, since the redox ions R and P are identical

except for the different charge, that DR and Dp are equal and the ionic

mobilities (velocity of migration in unit potential gradient) are

proportional to the valence charge. Then, at steady stat% rate of

transport of R towards electrode (gi. moles per sq. cm. per sec.)

*The relation is XR + Xp +XA + XH20 - 1 litre, Where the X values are the

effective partial volumes of the constituents, in litres. These volumes

are functions of the concentrations. For example, the value of XR - dRO

where IR is the partial molar volume of R (15) in litres per gm. mole per

litre, R being in gm. moles per litre. The functional relation of Y to R,

P, A, C is complex and "R can vary from the molar volume of the pure state

to zero or even negative values.
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= D kIR/dx + RZu dV/dx

where u is the mobility per unit charge. For the anodic case, dR/dx will

be positive and dV/dx negative. Thus,

i/nF - D dR/dx + RZU dV/dx (5)

Also, considering the mass transport of product away from the electrode,

i/nF - -(D dP/dx + P(Z+n)u dV/dx) (6)

At steady state the total transfer of the non-discharging anion is zero and

0 - DA dA/dx + AZAUA dV/dx (7)

DA, UA are the diffusion coefficient and ionic mobility per unit charge
respectively of A. ZA is the algebraic charge, e.g., for C1I , Z. would be

-1. The final equation, that of electrical neutrality at any point in the

electrolyte is

ZR + (Z+n)P - ZA A (8)

From equation 8,

ZdR/dx + (Z+n)dP/dx - ZA dA/dx (8a)

Subtracting equation 6 from equation 5,

(D/u)d(R+P)/dx + (RZ + P(Z+n))dV/dx - 0

From equation 8,

(D/u) d(R+P)/dx + ZAAdV/dx - 0

From equation 7,

(D/p) d (R+P)/dx -..(DA/VA)dA/dx - 0
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Substituting for dA/dx from equation 8a,

(D/u.)(dR + dP)-(D AiA)[(Z/ZA)dR + ((Z+n)/ZA )dP] =0

[(D/U)-(DA/UA)(Z/ZA)]dR + [(D/tj)-(DA/uA)(Z+n) /ZA] dp - '0

or

k 1dR + P-0(9)

The boundary conditions are R - Rb, the bulk concentration (unaffected by

mass transport) when P - P b' therefore

k 1 (R-R b) + k 2 (PPb M 0 (10)

Equation 10 represents the relation between P and R at any point in the

electrolyte. Eliminating dV/dx between 5 and 6,

(i/nF - D dR/dx)(l/RZ) - (-i/nF-D dP/dx)(l/P(Z+n))

Substituting for dP/dx and P from equations 9 and 10 gives

(i'nF:-D dR/dx)(l/RZ) -,(-i/bF + D(kl1lk 2)dR/dx) (1/[(k, /k2) (R b-R) + Pb](Z+n))

Collecting terms in i

i - (nFD dR/dx) (k 2 + k 1 k 3 )/(k 2 + k 2 k 3 ) (11)

where

k RZ /[(k 1/k 2 )(R b-R) + Pb ](Z+n) (11a)

Clearly the complete form of equation 11 is too complex to be of much use.

In general, however, k3 will be some value between 0 and oo and

i - (nFD dR/dx)(l to k /k) (12)

Now

k /k (D /u) - (DA/tA)(Z/ZA)]/[(D/m.) -(DA/4A)(Z+n)/ZA]
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But (lb)

D/?- kT/e - DA/PA (13).

Therefore,

k /k 2 = (ZA-Z)/(ZA-(Z+n)) (14)

Note that ZA is always of opposite sign to Z and therefore zero cannot
occur in the denominator or numerator. For example, for Fe 2+ - Fe 3 + , with

2+ 4+

So4 anion,i.:k 1 /k 2 = (-4)/(-5) - 0.8. For Sn2 + - Sn 4 + with Cl anion,

kI/k 2 - (-3)/(-5) = 0.6. Thus k1 /k2 is not widely different from 1. The

above equations have been derived assuming that Fick's law applies with a

constant diffusion coefficient and that mobilities are constant. These

assumptions are not likely to be exactly true, therefore it appears that

a reasonable simplification of equation 11 is

i - nFD dR/dx (15)

where U is nearly constant with varying i and is of the same order of

magnitude as the true diffusion coefficient. Equation 15 may be compared

with the often used (17) equation

i - (nFD/(l-n+)) dR/dx (15a)

n+ being the transport number of the reactant. It can readily be shown

that this equation follows from equation 11 when k3 is large (Z+n - 0, for

example), Z - -ZA, and D - DA. However, if equation 13 is taken to be

precisely correct, D - DA means that u - uA and therefore the transfer

number is one-half. Equation 15a must be an approximation since it has no

term in the diffusion coefficient of the anion.

When a supporting non-discharging electrolyte is present a precise

treatment requires the writing of additional equations of the form of

equation 7 and the simultaneous solution of the equations as before. How-

ever, it is readily seen that a supporting electrolyte will have the effect
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of reducing k 3 towards zero, giving i = nFD dR/dx.

For diffusion in a porous medium of porosity C and tortuosity." factor

q (18), the mass transport based on the total area is given by

i = nFDeff dR/dx (16)

where Deff - e/q (16a)

3.3 Redox Reactions at a Porous Electrode: Ohmic Effects Neglected

3'3.' Reaction Within Electrode

The system considered is illustrated in Figure 1. It will

be assumed that electrolytic current and mass transfer occur through one

plane face, with negligible edge effects and negligible non-uniformity of

current density in the electrolyte. The system is, therefore, one dimensional

and we can consider a unit area of face. Let the concentration of reactant

and product in the bulk of the electrolyte be Rb, Pb respectively. Let the

thickness of the electrode be t. Equation 2 can be written as

i - i ((R/Rb)e MFT/RT - (P/Pb)e(1-) nFi/RT)

or

i - i ((R/Rb)eO'/b - (P/Pb)e- (l-)n / b) (17)

For electrodes of reasonable thickness and pore size, the macro-pore size

will be at least two ordersof magnitude less than the thickness (10 microns

and 1 mm, for example) and we can assume that mass transfer effects across

the radius of a pore are negligible compared to mass transport effects along the

axis, of the pore.

Consider a differential element dx as shown in Figure 1. The reacting

area is Sdx and the current, di, from the element is

di - io((R/Rb)e'I/b - (P/Pb)e'(1"a)/b)Sdx
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The amount of reactant diffused out of the element at the plane x 1sD'dr,/dx

(where D is understood to be the Deff of equation 16). The amount diffused

in through the plane at x + dx is equal to D(dR/dx + d(dR/dx)). In the usual

way, therefore, at steady state,

di - nFD(d 2R/dx 2)dx

and
d2R/dx 2 = (i S/nFD)[(R/Rb)ecM/b - (P/Pb)e'(la)/b] (18)

If ohmic effects are neglected, ri is constant through the electrode. For a

redox reaction with supporting electrolyte the effective diffusion coefficients

of R and P are nearly equal and little error is introduced by letting the

diffusion coefficients be equal. Then, for equi-molar counter-current dif-

fusion

R + P - Rb + Pb (19)

Substituting for P into equation 18

dR/dx2 - (1 S/nFD) [ (ew /b/Rb) + (e'(1-a)T/b/Pb)]R

-(ioS/nFD)(Rb + Pb)(e'(la)I/b /Pb) - 1R - K2 (20)

The boundary conditions are dR/dx -0 at x - 0, since no mass transport occurs

beyond the left hand face, and R R - at x - t, R being the concentration at

the right hand face. The solution of equation 20 for these boundary conditions

is

K R-K2  e .. + e

K 1 R5 -K2  +. l

The total steady state current from reaction in the interior of the electrode

is
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i - nFD(dR/dx)x-t

Now

(K IR s-K 2 ) - NrrxxKldR/dx - ( f-1e 1 N l x - 1- )
(e t +e .'l )

therefore

(KlR s - K2)(
4 7 (e[K - e" Klt)

i - nFD
(K1) ( .i t + e- J t

= bFD(KIRs-K 2)(i/Ni) tanh(tIi)

But since the RHS of equation 20 equals the RHS of equation 18, K1R S-K2 can

be replaced and

i f (ioSt) [(Rs/Rb)e/b - (Ps/Pb)e(l-)/b](l/t il)tanh(t4KI) (21)

Thus we arrive at the usual form of rate equation but modified by a factor
(/,_l )tanh(t 1)

Several limiting cases can be described.

(i) Low exchange current, low to moderate polarization. From equation

20,

KI = (ioS/nFD)[ (eO'q/b/Rb) + (e-(l1-)i/b/Pb)] (22)

If i Sis low and polarization not too high, t i is small, Then

(l/t W4 1)tanh t W 1 is near 1, and-

i - (ioSt)[(Rs/Rb)ecal/b - (Ps/Pb)e-(l-c)rl/b] (23)

Thus, if there is negligible concentration drop from the bulk electrolyte to

the electrode surface (as would be expected/at low currents), R. - Rb, Ps Pb

*For example, (tanhx)/(x) = 0.97 at x = 0.3.
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and we obtain the usual form for a low exchange current reaction with the

whole of the interior surface area (St) of the electrode being utilized.

If i St is so small that tIl is small for polarizations above 50 milli-

volts or so, then equation 23 reduces to. the normal Tafel form, with a slope

of 2.3 RT/anF.

(ii) Low or moderate exchange current, high polarization.

From equation 22 it is seen that as rj goes up (or as o S is

higher), t~-l goes up. Eventually the situation is reached where

t 1l > 2. Then tanh(t l) is equal to one and equation 21 goes to

i - ioS [(Rs/Rb) eC 9 /b - (P/Pb)e -(1- )T /b I

h(ioS/nFD)[(eC/b/Rb) - e( /b/P (24)

The thickness of the electrode disappears from the equation since the

concentration of reactant in the interior reaches zero at some penetration

less than the thickness. When Tj is great enough for e"(l-)I/b to be

negligible,
1/2

i = (iSnFDRb) (Rs/Rb)e CCQ/ 2 b (25)

For negligible concentration gradient outside of the electrode Rs /Rb = 1

and equation 25 is a Tafel form equation, with a slope, however, of twice

the expected normal value. The apparent exchange current is 1 ioSnFDRh .
(iii) High exchange current; pure concentration polarization.

For very high exchange currents, that is, i/ioSt small, we get

the normal form

= 2.3b log (RbPs/RsPb) (26)

The physical meaning here is that the current can be supplied from an

infinitesimal layer at the electrode surface. This layer is so thin that

the concentration gradient which is diffusing reactant from the surface

into this reaction zone is virtually zero. The interior of the electrode

is at Rs -R and P + 5P; where 5R and 5P are small quantities which bring
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the interior of the electrode to equilibrium conditions. In the infinitesimal

surface reaction layer where R. goes from Rs -8R to R the slight deviation

from equilibrium is sufficient to supply the current being drawn.

'3.3.2 Reaction at Surface of Electrode

The treatment in the previous section describes the current-

voltage relation for current produced from the interior of the electrode. In

addition, however, the exposed face of the electrode will support current.

Although the geometric external area considered is unit area, the external

reacting area which is freely available without mass transport restrictions

in the interior porous system can be considered as f sq. cm. per sq. cm. of

geometric area (see discussion of equation 1). Therefore, a more complete

equation for current density is

i - interior + iexterior

- (itS)[(Rs/Rb)eO /b - (Ps/Pb(1( l/b](1/t rl)tanh(t Wi)

+ i f(1-E)[(R s/Rb )e */b - (Ps/Pb)e-(1-a)i/b

1-e is the area of the exterior allowing for open pore mouths. Thus,

i - 1(iotS)(i/t vl)(tanht Ti ) + iof (1-C)][(R /Rb)ea/
b _ (P /Pb)e-(1-a)T/b/

(27)

The relative importance of the two currents is described by

iinterior /iexterior m t(S/f (l-C))(l/t4-l)tanh(t ij1)

From equation 1,

Siint /iext - [(t(l-C)A](l/t4iK)tanh(ti 1) (28)

A is the internal perimeter area. For example, an electrode of 307. porosity

and a pore diameter of 10 microns has A - 4 C/d - (4)(0.3)103 R. 1000 sq. cm.

per cubic cm. For tF 1 small (< 0.3),pe1
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i int/iex t = tA(l-C) (28a)

-l
For a thickness of 0.1 cms. and A - 1000 cm. , the ratio of interior to

exterior current is then about 100, and the exterior current is negligible.

For t 4 > 2,

int ext 1

= A(1-e)/1(i 0 S/FD) (e b/Rb) + (e(l'J)1/b/P6)]

(28b)

For e(l')1/b/Pb negligible

iint /iext - A(l-e) / N (ioS/nFDRb)eCM/
2 b

From equation (25),

iint /ext = (A(1-)/iit) N (R/Rb) (28c)

For example, for n - 1, Rb = 0.1 gm. mole/litre, D 10-6 cm. 2/sec., (allowing

for porosity and tortuosity), Rs/Rb -1,

int /iext = (A/int)(2)(10-3

For lint in millamps/sq. cm. and A - 1000 cm.- ,

iint /iext % 2000/1int

Thus the exterior current would still be a small fraction of the total current

at 100 mamps/sq. cm., providing the electrode was not near the limiting

current, of course.

3.3.3 Effect of External Mass Transport

Assuming a simple "stagnant film" (14) concept to be suf-

ficiently accurate, the effect of mass transport outside of the electrode can

be expressed (14) by
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R /R b  1- (29)

Ps /Pb l+ Yi/iL

As before it is assumed that the effective mass transport coefficients of

R and P are equal. 7 is the ratio R b/P . Substituting in equation 21,

i - (iots) (G/4l)tanh(t J7 [ (l'iliL)eeC/b - (I + yi/iL)e " (l 't)

Rearranging,

ji/i (iots/iL) (ea/b - e-(l-a)TI/b

L -V%_/aht-K, + (i~tS/iL)(eC9/b +e- (l-)T1 (30)_

A somewhat more convenient form can be obtained as follows. From equation 22

K = (o tS/tnFDRb ) [e
O I/b + _e-(l'a) I b ]

The limiting current is given by

iL = nFDRbq/Be (31)

8 is the effective thickness of the "stagnant film" at the exterior of the

electrode. q and C are present to convert the effective diffusion coefficient

in the porous electrode to that in the free electrolyte outside. Let

ease of mass transport at exterior
ease of mass transport in interior (32)

Also let jots 0 (1 0 is the exchange current density for complete utili-

zation of the electrode.) Then,

t 2 K1 - (Io/i )*eM/b + ye-(l-a)T]/b

Equation 30 now goes to
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(io/iL (eM /b - e( )/b)
i/i L  

0 L

(o /i L )[e ail/b + ye-(l-a)TI/b] + 0io/ L) eOn/b + y/e ( 1-a) / B ]

tanh -- /oi L leb' / b + _ e - ( 1-a)T/b] (33)

Equation 33 represents the complete form up to the limiting current. When

i is not near iL it reduced to the previous forms, with R /R -

For high exchange current reactions, that is, i /i large, i/1° -+ 0,

equation 33 reduces to

i/iL = (e /b - e -(l )1/b)/(e ] /b + Ye" ( l -a ) i / b )

Rearranging,

T] = 2.3b log [(1 + Yi/iL)/(l-i/iL)] (34)

This is the expected equation for pure concentration polarization.

3.3.4 Calculation of Equations

Equation 33 contains the parameters o/iL, L', y, a, b. For

irreversible conditions, y disappears and a, b can be combined as a/b. It

will be noted that for irreversible conditions (o/i L ) and eC1]/b always

occur together as [(Io/iL)eOM /b. Thus as (Io/iL varies, the shape of the

curve log (i/iL) versus O/b will be the same, but displaced by-a definite

increment of CAr/b. If we know the shape at (o/i L )l and if Ail represents

the bodily shift at (i0 /)2'

(I/i L)i eC'11 / b  /i( L/)L2 e (Cal/) +  (OINT/)

or T)T = (2.3)(bla) log[(io/i L)l (io IiL)2] (35)

It is convenient to compute the results in terms of i/iL and Cai/b - T1

Then,

-(l-g)TI/b - ?[ (i-a)-l]
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Reasonable values of 7P can be derived, as follows. 5 is normally about 0.05

cms for unstirred electrolytes and may be 10 times lower for vigorous rates

of flow past the electrode (17)'.. q/E is normally in the range 5 to 10, t

may be from about 0.01 cms (a lower value may mean that the external surface

reaction cannot be neglected) Lto say, 1 cm. Therefore

I qt/U - (5)(0.01)/(.05) - I minimum

or = 10/(.005) = 2000

For unstirred electrolytes, q/E = 5 and a'thickness of 0.1 cm., a value of

7P = 10 seems reasonable. Therefore results were computed for 4P - 1, 10, 100,

For near reversible conditions, y was taken as 1, a as 1/2. The results are

shown in Figure 2.

[Note that 4' = 0 means t = 0. When t = 0, the term for reaction at the

external surface must be included and current from the interior neglected.

Therefore 7P = 0 represents a solid electrode with a surface exchange current

density of i .1 It can be seen from Figure 2D that as 4' becomes greater, a:Tafel
section is obtained with double the normal slope and this section increases in

length as 7' becomes greater. However, it should be noted that when the

reaction is irreversible, not near the limiting current and completely in the

internal mass transport affected region (4[7 large), equation 33 (or equation

25) reduces to

i/i L = 4 o/iL) / e"/2b

Since i0 and 4' are both proportional to t, it is not possible to force the
system into a longer Tafel region by increasing t. If the basic exchange

current is so high that no clear Tafel region exists, then increasing t will

not produce a Tafel region. The apparent exchange current of this region is

iLN-(io/iL)/ . For the case plotted in Figure 2D, when 4P- 100 this equals

iL/l00, which agrees with the value obtained by extrapolation of the linear

part of the curve to zero polarization.
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.3.41 Redox Reactions at a Porous Electrode: Ohmic Effects Included.

3.4.1 Basic Equations.

The treatment given in section 3.3 is only a limiting case

of the genera current-polarization relation, since it neglects the effect of

ohmic voltage gradient in the pore electrolyte. The effect of potential

gradient in the electrolyte within the pores of the electrode depends on the

relative magnitudes of the conductivity of the electrolyte and the diffusion

coefficient and concentration of the reactant. For a high concentration of

supporting electrolyte (and consequently high conductivity) and a low concen-

tration of reactant, the limiting current will be low and the polarization is

controlled mainly by activation and mass transport. For a weakly conducting

electrolyte and a high concentration of reactant, the activation and the

ohmic effects within the pores will be the controlling factors.

Let us consider the case where the conductivity of the electrolyte is

reasonably constant, even though reactant ions are being changed into product,

ions. This is a good assumption for a strongly supported electrolyte. Let p

be the specific resistance of the electrolyte in the pores. Then, as before,

p = p16/q (36)

where p1 is the free specific resistance. Ohmb law gives

i = (i/p)dV/dx (37)

When current is being drawn from the electrode, the current is supported by

ionic flow in the electrolyte in the pores. Just as in the case of mass

transport, all of the current-carrying ions must pass through the external

facewhile only a few may be required to reach the left hand face. The

voltage gradient is highest, therefore, at the external face. Unlike ohmic

loss in the electrolyte away from the electrode, the voltage change in the

pore electrolyte has a direct effect on the speed of the electrochemical

reaction, since the pore electrolyte potential is the potential from which

ions are discharging to the surface. In the equation



i =i1((R/R b)e M/b _ (P /P b)e (a 1b

the polarization must be measured between the pore electrolyte and the electrode.

rj will vary along the pore, being greatest at the external face, and dV/dx

dn/dx.

The equations to be solved are now

dii10S ((R/R b)e mq/b _ (P/P b -(-)el)dx

di -nFD(d 2R/dx 2)dx

i = (l/p) dij/dx

The boundary conditions are

dR/dx = 0 at x =0

R - R at x t

1I = 1,at x t

1j =qoat x=0.

The total interior current is given by

i = D(dR/dx) (l/p) (dTI/dx)
x=t x=t'

As before, we can assume the mass transport factors of R and P to be equal and

constant and

R +P Rb +Pb

or P/P b =(y + 1) -R/P b

Combining the ohmic and mass transport equations

(l/p)di1/dx -nFDf(d 2R/dx )dx
0

Since dR/dx 0Oat x-O0,
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fdl - pnFD fdR

is- - pnFD (R -R) (38)

We are now in a position to compare the relative effects of mass transport

and internal ohmic voltage gradient. For example, if R = 0 at x = 0,

Rs = 10
-3 gm. mole/cm. , p = 50 ohm cm., n = 1, D = 10- 6 cm. 2/sec., then

rs-jo -. 0.5 millivolts. Such a small change in voltage will not produce

much effect compared to the corresponding depletion of reactant in the

interior of the electrode. As current density is increased, the penetration

into the electrode at which R becomes nearly zero becomes smaller and due

to this mass transport effect the reaction is concentrated in the region

towards the right hand face of the electrode. Then the mean path through

which ions have to travel becomes less and although i becomes greater and

hence dTI/dx becomes greater, this is accomplished by x being smaller and

not by TI becoming greater; 1- T remains the same.

I5 _s-i becomes greater as p and Rs become greater. However, if Rs is

an ion it is not possible to make the specific resistance p greater while

increasing or maintaining R . To make the internal voltage effect over-

weigh the mass transport effect it would appear to be necessary to use low

conductivity solutions with a high concentration of a non-conducting

reactant.

The complete equations can be written as follows. From equation 38

R - R5 -(7s1T-)/PnFD (39)

Combining the kinetic and ohmic equations gives

(l/p)d 2 n/dx 2 - iS((R/Rb)ef q /b - (P/Pb) e- (l-a)TI/b)

M ioS((e C1/b/Rb) + (e-(l-)TI/b/Pb]R

-ioS(Y + l)e(l-)TI/b
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Substituting for R from equation 39

(/pi 0S)d 
2r/dx 2 = [(eC/b/Rb) + (e-(1-a /b /P b[Rs-(Ns-)/PnFD ]

- (y + i)e - ( l a)T/b (40)

Equation 40 is the equation relating polarization to distance through the

electrode.

3.4.2 Limiting Cases.

Case 1. Low resistance, low current density, R small.

This would apply for a low concentration of reactant and a high

concentration of supporting electrolyte. Under these circumstances, the mass

transport limited currents would be low; the limit at which ohmic effects are

negligible is the case which has been dealt with in section 3.3. Mathematical-

ly, from equation 38 this limit is given by Q st being small, for low values

of p and Rs . This case is probably the most widely applicable.

Case 2. High exchange current: pure concentration polarization.

For very high exchange currents, a slight deviation from the

reversible potential will give a large current. Therefore, as discussed in

section 3.3.1, the reaction will be accomplished in a thin layer at the out-

side of the electrode. As this layer tends to zero thickness, that is

dx - , both dr and d1 tend to zero and the electrolyte in the interior of

the electrode is at almost the same concentration and potential as at the

surface. Equations 26 and 34 then apply at this limit.

Case 3. Very low conductivity, high reactant concentration, high

current.

This case applies when the currents being drawn are great enough compared

to the conductivity and small enough compared to the mass transport that ohmic

polarization is large without the values of R being much changed. Mathematical-

ly, from equation 38, is-q must be large for Rs-R small. For example, a change

of R from R to 0.9R will not produce much change in rate or polarization.
T c

The change in polarization through the electrode is then
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rs -1 a pnFD(R s/10)

21-3 moe/m3 1-6 2 -i
For p = 10000 ohm cm., R. 2N = 2(103 ) gi. moles/cm. 3 D - 10 cm. sec. 1

" Ts- would be 0.2 volts. Such a voltage change would completely overweigh:

the effect of change in R. The equation to be solved is then

d 2/dx2 - pioS[(Rs/Rb) eC'q/b - (Ps/Pb)e-(' )T/b] (41)

The physical picture is as follows. At the left hand face of the electrode,

with a polarization o , the current being produced is very small. However,

this small current produces a small ohmic gradient which increases 'n as we

procede from left to right. The larger il produces a largercurrent increment

and, since the total current is additive, the ohmic effect becomes greater

and greater. The exponential nature of the current increment versus polari-

zation means that at some cumulative polarization the current will increase

extremely rapidly and most of the reaction occurs towards the right hand face

of the electrode. It is clear that very small changes in To will produce very

large changes in js and the final current. Thus we may cover several orders

of magnitude of current with an almost constant value of o" The value of 1o

for a given order of magnitude of current will depend on Si0 . Again, two

limiting cases can be considered.

Case 3A. Low exchange current.

Let us consider the case where the effective exchange current Si0

is so low that To must be fairly large before appreciable current is obtained.

For this irreversible condition, the negative exponential term in equation

41 can be neglected and

d 2 /dx 2- Pi 0S (Rs/Rb) eCf Q/b (42)

Letting 1 - 1o + At '

d 2 (AI)/dx2 = pi S(R s /R b ) ecalo/b eO7/b (42a)

The boundary conditions are now Al - O at x - 0, d(Au)/dx -0 at x -0. For
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very low values of pioS(Rs/Rb)e C19/b, the current is small, ohmic effects are

negligible and d2AI/dx2 -* 0. Equation 42a can be put as

d(ATI /dx) pi oS(R s /Rb) eC qo /bf ete& / bd x

0

When d An/dx -+0, Allo-*0,

= AiS (R /R b )e °/bx

Since i - (i/p)(di/dx)xt

i = 1 oS t(Rs/Rb) e
o o/b

This, of course, is the required Tafel form with uniform utilization of the

electrode. The more interesting case is when pi0S e
cfo/b is high enough to

make All appreciable, so that the bulk of the reaction occurs in a layer near

the external face. Putting pioS(Rs/R b)eO/b - k and a/b - a, the equation

is

d 2(Al)/dx
2 ' ke A

Let y - d(A11)/dx then d2An/dx2 - dy/dx -(dy/dAI )y.

Then

ydy/d(ATI) = keaATI

and y 2 /2 = (k/a)ea 1] + C

or dAj/dx = [(2k/a)eaA TI + C]1 / 2

When x - 0, All = O and d(A&)/dx = 0, therefore C = -(2k/a) and

d(ATI)/dx = [(2k/a)e (2k/a) 1/2 (43)

Thus the total current is

i - (l/p)[d(,rq)/dxffit

- (1/p) .4(2k/a) (e a ( Tis - 1iO) - 01/2

- (l/p) A2pioS(Rs/Rb) e~ffjo/bb/Cs (e ( i s /  
-j

°) / b  1)1/2

(44)
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When exp[a(TIs-o)/b] is large enough for the 1 to be negligible,

* I

2 / 2i S (R s / R b b4 -a" / - eO)s/2b (45)

For Rs/Rb - 1, the plot of log i versus 1s is a Tafel form with double the

usual slope. The apparent "exchange current" is dependent on p.

Case 3B. High exchange current.

Letting Rs/Rb = 1, Ps/Pb = 1, equation 41 can be written as

2 2
d 21/dx - 2pi0S sinh(COr/b) (46)

This has been solved by Stender and Ksenzhak (3). (See also Section 4.2).

For the boundary condition of 71 0 0, (that is, high exchange current and

thick electrodes)

/ b (ef/2b -(1 -aJl.2b) (47)

ap

We will not discuss equations 45 or 47 at this point, because the con-

ditions under which they apply will be very rarely met in the type of system

considered here. In this respect we disagree with Stender and Ksenzhak, who

c~lculated results at p = 50 ohm-cm, assuming uniform concentration of reactant

throughout the electrode. Equation 38 shows that s-Io would be only a fraction

of a millivolt, with complete internal mass transport control of the process

for such a resistance and a feasible reactant concentration. For the same

reasons, we will not compute equation 40 since it is felt that the ohmic effect

will be small.

Another interesting case is that where no supporting electrolyte is

present and the product is non-ionic. The specific resistance is then given

by

P - Ps(Rs/R) (48).

where ps is the resistance at concentration Rs . For I N solution, R. a l03
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moles/cm 3 and p8 is about 50 ohm cm maximum.(allowing for porosity, tortUosity

factors). The ohmic and mass transport equations now combine to give
x

dI/dx p snFDRs (I/R)f(d R/dx )dx
0

Since dR/dx- 0 at x = 0

fd1  p snFDRf(l/R)dR

Ts- - psnFDRs 2.3 log(R s/R) (49)

Since PsR is about 5(102 )y D is about 10"6P

- (1/100) log(Rs/R)

10 log(R s/R) millivolts.

A value of R /R of 100 would represent large mass transport effects ins

the pore electrolyte, but is - would be only 20 millivolts. Therefore,

although the ohmic effect is much greater in this case, it may not cause a

very pronounced deviation from the treatment of section 3.3. It .shodildbe

noted that at a given current density, the treatment of section 3.1 gives a

value of r which lies between To and ys" Therefore, the deviation of il

from Ts is some fraction of s - To, not the total amount. The complete

equations can be set up as follows. The combined mass transport-electro-

chemical equation is equation 18

d2R/dx2 . (i 0 S/nFD)[(R/Rbde -
/ b _ (P/Pb)e - ( l - a ) / b

The measured polarization is that at the surface, js and from equation 49,

eC/b = (R/Rs)aPs nFDRs/b eas/b

Substitution of this into the preceding equation gives the final form. The

effect of ohmic voltage gradient is given by the factor
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(R/R? PsbFDRs /b

For a - 1/2, b - 0.026 at room temperature and psNFDRs ", 5/1000 we get

(R/Rs)apsnFDRs/b (R/R) 1/10

At R/Rs = 10- 3 the factor is 10"0 .0 1 5 = 0.93, therefore, the deviation
from I is not great and the solution of equation 18 as before can be used.

Although Ts- o may be appreciable, 1s lies close to, but a bit greater than,

the value of 1 calculated from equation 33. The physical meaning here is

that the ohmic effect is small until R/Rs is small, that is, well within the

electrode. But most of the reaction occurs towards the outer face of the

electrode so that I s P effective. ro may be markedly different to Ts, but

very little reaction occurs at io conditions due to the low value of R.

3.5 Effect of Double Electrode Structure

The previous treatments have assumed that the electrode is homo-

geneous with penetration and that the polarization is measured adjacent to

the exposed face of the electrode. If a double layer structure is employed,
as shown in Figure 3, the mass transfer coefficient in the outer layer is

different to that in the free electrolyte. Let us suppose that the inner

layer is the active electrode material, while the outer layer is inert

electrochemically. The polarization, and the value of Rs. to be used in

the previous equations are those at t, whereas the polarization is measured

at L.

If C/q is the porosity-tortuosity factor for the coarse layer, and 8 is

the effective "film thickness" in the free electrolyte,

i = nFD(Rb-Rs) i/[(Lq/c) + 5]

iL = nFDRB/[(Lq/c) + 8] (50)

end

R s/R = 1-i/i L

This is the result used previously, except that iL now depends on the values
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of L, q and C of the outer layer.

For example, if L is 0.05 cms and q/C is 5 (a reasonable figure), the

term Lq/C is 0.25 cms. This is five times the effective 8 of 0.05 cm. for

unstirred electrolytes, therefore iL will be only 1/6 of the usual limiting

current.

The ohmic voltage drop in the coarse layer is

AI - ip'Lq/e (51)

The measured polarization must be corrected for this An before experimental

results are compared to theoretical expectations. For a large conductivity,

p'q/E -. 10 ohm cm and for L - 0.05 cm, i = 100 mamps/cm , ,L1 = 50 millivolts.

It is apparent that the use of a double layer structure is a big dis-

advantage where the limiting factor is the mass transport of reactant from

the bulk of the electrolyte to the reacting electrode.

(4) GAS DIFFUSION ELECTRODES (THREE PHASE SYSTEMS)

4.1 General Introduction

The mode of operation of a gas diffusion electrode is, in general,

more difficult to describe mathematically than a simple redox system. The

principal difficulty is that the processes occurring at the three phase boundary

are not known with any degree of certainty. It is necessary to choose a

simplified model of what we think is happening. If an attempt is made to

allow for every possible factor, the model becomes so complex that extensive

computation is required. It would appear to be more reasonable to start

with the simplest models, determine how these would behave, and compare the

theory to experimental values. For example, a simple model which might be

applicable under certain conditions is shown in Figure 4. In this model it

is assumed that the bulk of the electrolyte is stabilized in the macro-pore

system of the electrode, but that a thin film of electrolyte covers, and

penetrates into, the micropore system. Reaction occurs by diffusion of gas

through the filmtfollowed by adsorption and reaction on the active surface.

The current must be supported by movement of ions through the thin film of
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electrolyte, parallel to the active surface. If the "film" is so thick that

it fills the pore, then gas will not be able to diffuse to the active surface

fast enough to support much current. On the other hand, if the film is very

thin, the horizontal ionic mass transport and conductivity in the film will

be too low to support much current. Thus this model can only apply if the

film thickness is considerably less than the macropore size (10 microns, say),

but much thicker than a few molecules.

The treatment of such systems may sometimes reduce to similar forms to

those considered before, but it might be expected that fresh formulae will

have to be derived in some cases.

4.2. Thin Film Model: Hydrogen Fuel in Acid Electrolyte.

The case of hydrogen fuel used at a porous diffusion electrode

in acid electrolyte is exceptional for two reasons. Firstly, there is no

ionic reactant from the electrolyte. Unlike redox systems, the system does

not have equimolar counter-current mass transport of reactant and product

ions. Mass transport limitations occur for dissolved hydrogen diffusing

through the film thickness W, and for H.H20 diffusing horizontally away

from the area of reaction. (However, H20 can be considered as a reactant.)

Secondly, hydrogen ion has a high mobility compared to other ions. For these

reasons, we have to consider anew.:the problem of mass transport polarization

versus ohmic potential gradient.

Let us consider the mass transport of product hydrogen ion, with concen-

tration denoted by P. Consider a differential element dx through the electrode.

At steady state, the mass transport of P along the film (assumed linear) is

related to current by

i - -nFDp (dP/dx)(AW/q) (52)

A is the macropore perimeter (per sq. cm. of electrode face) and W is the

mean thickness of the film, therefore the cross-sectional area for horizontal

mass transport is AW:q is the tortuosity factor. This neglects geometric

effects, but the geometry of the pores of an actual electrode is likely to be



-30-

complex, and the linear approximation is probably as valid as assuming some

other geometry, e.g., a cylindrical geometry. The ohmic effect, again taking

a linear approximation, is

i = (l/p') (dTj/dx) (AW/q) (53)

Combining and integrating equations 52 and 53

s- - p'nFDp(P-P s) (54)

where rs' Ps refer to the polarization and concentration at the junction of

the thin film and the bulk pore electrolyte. As the current density becomes

greater, hydrogen ion builds up in the film and the specific resistance goes

down. The minimum specific resistance is about 2 ohm cm and p' will normally

be higher than this; D for hydrogen ion is about 10-4 , therefore,

Ils-i > 20(P-P S)

P can easily increase from 1 N to 10 N, giving an ohmic voltage change of at

least 200 millivolts. Thus, in this case, the large effective diffusion

coefficient of hydrogen ion combined with the large possible concentrations

make ohmic effects appreciable compared to mass transport effects.

Since there is no counter-current flow of reactant product ions, the

outward mass transport of hydrogen ion leads to, at steady state, a diffusive

inflow of water. Since water is not discharged, this must be matched by an

outward bulk flow of electrolyte. As before (see section 3.2), when P is not

very high the outward flow of water will not much increase the effective

diffusion coefficient of P. We will assume as a first approximation that the

activity of water remains 1. We will also assume that the specific resistance

of the film is constant.

Case 1. Reversible Electrochemical Reaction.

For a good surface catalyst such as highly active platinum it is

possible that the electrochemical reaction remains close to reversible at

all current densities. Then the polarization at any point x in the thin
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film is related to the concentration of dissolved hydrogen at the active

surface, H say, and the concentration of P, such that

- (RT/F) ln[(Hb/H) 1/2(P/Pb)]

HB is dissolved H2 concentration corresponding to saturation at the pressure

of the gas in the pore. Or

e-27/b . (H/HB) (P/Pb) 2

Let us assume, again as a first approximation, that for concentrated acid

solutions the variation of P/P'b along the film can be neglected. Also we

will assume that mass transport of dissolved hydrogen occurs across W, that

is, it is a linear process perpendicular to the active surface. It is also

assumed that mass transport resistance in lhe gas phase.ionegligible. Then,

since Adx is cross section for vertical mass transport,

di - (2FD/W)(Hb-H)Adx

or H/Hb = 1 (W/2FDAHB)di/dx (55)

Substituting into the previous equation for polarization,

e-/b -. l(W/2FDAHB)di/dx

But from equation 53

di/dx = (AW/qp') d
2T /dx2

therefore,

d2-/dx 2 = k(l-e - 2 /b) (56)

where 1/k - W2 /2FDHBqp' (57)

The total current density is given by

i - (AW/p'q)(dj/dx) Xt (58)
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t is the length of the thin film up to the bulk pore electrolyte.

The partial solution of equation 56 can be obtained as follows. Let

dT)/dx - y, then

d 2 1/dx 2 - -ydy/dTI

Thus equation 56 goes to

ydy/d~l - k --21I/b

Separating and integrating,

y 2/2 = k1l + (bk/2)e -2T1/b + C

or d1/dx (2kT + (4bk)e -21/b + )1/2

From the boundary condition that dn/dx - 0 at x - 0 (since i1 0 at x - 0),

C - -(2krjo + 4bke -21o/b'an

d1j/dx = Nf -2 [ (1j-TI0) + (b/2)(e- -21/b _ e- -21 ob A A/2 (59)

This, of course, is only a partial solution since 1j0 is unknown.

Let us consider low polarization conditions where 1 is low. Then,

using the exponential expansion and neglecting higher power terms than 1j 2

2 b r21/
d1I/dx -=~ T-I bi

= (Y)2 _1O2 )(2k/b) 1 /2

Separating and integrating,

ln [(TI +f J7 110F)/C] -2/

When x -0, 1I - 1P therefore C = T1 and

42 2 i J 12/bx
71 + 1 =ITI 0 e

4and r2-r 2 2 2 N'-2k-/bx +2 T) )b
l-l T 10, T 0e+T 2I07
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or
11= (1/2)ilo (e + e

At x t, 1i TIs.' therefore

.q/rM = (e2J b + e b /(e + e (60)

Therefore, from equation 58

i - (AW/P'q)TI s r tanh(J27b t) (61)

The result obtained is that i is directly proportional to Ts which is the

measured polarization (allowing, of course, for ohmic drop in the bulk of

the electrolyte). The slope is

(AW/p' qB4FDHBqp' tanh(4FDHbqp ' (t) 2
(W/! ) W~b tahl' b )W)

- NI(2AFDHb)(A/p'q)(2/b) tanh N(2FDHb)(2qp'/b)(t1W) 2  (61a)

Good estimates can be made of all of these terms except t/W. t/W can be

replaced by a measurable quantity by expressing it in terms of the limiting

current density iL'

The limiting current is obtained when H -+ 0 along all of the thin film,

therefore from equation 55,

iL = (t/w)2FDAHb (62)

For example, 2FDHb at room temperature and 1 atmosphere of H2 is-about

10 . For a value of A of 10 cm2/cm

2FL I (t/W)lO 3 amps/sq. cm.

= (t/W) milliamps/sq. cm.

Thus, values of t/W of the order of 100 appear reasonable, assuming that

the limiting currents observed experimentally are due to the physical model

discussed above.
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When the term J(8FDHb)(qp'/b)(t/W) 2 is small (< 0.1) the tanh term

reduces in the form tanh x - x. Then

i = 2(2AFDHb/b)(t/W) Ts (61a)

or i/iL = 2js/b

The slope is now independent of the specific resistance of the electrolyte.

This is the case of pure concentration polarization with negligible ohmic

effect. When the tanh term reduces in the form tanh x = 1, (x'> 2)

i = (2AFDHb) (A/p'/q) (2/b)'-1s (62a)

The apparent conductivity is now proportional to the square root of the true

specific conductivity.

Returning to equation 59 to consider the full form of the equation, it

can be seen that it does not have a convenient general solution. However,

physical reasoihing tells us that if the ohmic effect through the thin film

is large, then Tj will be small. In fact, at any given current density the

value of ro is less than jc which is less than T s where ic is the polari-

zation which would be obtained from simple concentration polarization (of

the hydrogen through the thin film). 'ic is given by

1c = (23)(b/2) log(.

Thus 1" c is not large until i approaches iL Since To is much less than c

when the ohmic effect is large (that is, t/W is large) then To will approach

zero except for conditions near the limiting current. Therefore, equation

59 can be put in the form

dT)/dx =-i [n - b(1-e-2TIs/b)]i/2

From equation 58, then,

-A -4FDH qp' Ib -2 /b) 1/2i (AW/p'q)/ 2j W - (l-e-2s/b]
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I(2AFDHB) [ b -21s/0 1/2

As expected, this reduces to equation 62a when Ts is small. The equation

can be put into a form suitable for computation by noting that 2AFDHbt/W = iL

and qp't/AW = p, the resistance of the electrolyte (for 1 sq. cm. of electrode)

in the thin film of cross-section AW and length t. Then equation 63 can be put

as

i =4 (iL/ )(b/2) [(2s/b) - (l-e - 2Ts/b)] 1 /2

Letting 2 p/b = r, Ins/b =

i = 7 [(2-) (l-e- 2T)] 1 / 2  (63a)

For a given system iL) r are constants while is the polarization as multiples

of b(=RT/F = 0.025 volt at room temperature). The form of the equation is

shown in Figure 5. It must be remembered that the equation is not valid at

the limiting current, therefore, Figure 5 does not show any limiting current.

For values of 2J greater than about 2

i CC 1(2Tj/b) -1 (63a)

2
Thus i versus 11 is a straight line.

Figure 6 shows the very pronounced effect which r has for a given limiting

current. However, it is unlikely that a process will have a high limiting

current (Ot t/W)with a; low value of r(c. t/W). Refering to

equation 63, it will be seen that parameters which decrease polarization at

a given current are A and H B . However, if A is made too large, the free gas

space will become small and gas transport restrictions will occur. HB can be

increased by increasing pressure, according to a Henry's law relation.

Case 2. Low Exchange Current Reaction.

In the case considered previously, the ohmic effect along the thin

film of electrolyte came into balance with the mass transport of hydrogen

through the thin film. For low exchange current reactions, the ohmic effect
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can also come into balance with the kinetic polarization. For long thin films,

it is possible that mass transport through the film is rapid even at fairly

high currents and ohmic Voltage gradients in the film. Then, providing the

current is not of the same order of magnitude as the limiting current, we

may set H/Hb constant. The situation now corresponds to that discussed in

Case 3, section 3.4.2. Case 3B, that of high exchange currents, will clearly

tend to the reversible condition treated above as Case 1, section 4.2. There-

fore, we would not expect it to be possible to consider it without allowing

for mass transport of hydrogen through the thin film. However, for Case 3A,

that of low exchange current, we may be able to neglect mass transport effects

providing we are well away from the limiting current. Then

di/dx = ioS e 
Ce/b

and

di/dx = (AW/qp')d 21/dx
2

Therefore,
2 2 eyn/b (4d 21/dx = (qp'i S/AW) e (64)

The assumption implicit in equation 64 is that the exchange current is so

low that the polarization at x = 0, i]o say, must be large (large enough for

e -(1-a)ITORT) to be negligible) before enough current is produced to give an

appreciable ohmic effect. As before, we can derive an equivalent equation to

equation 43,

d(Ail)/dx = [(2kb/O) e Oan/b - (2kb/a)] 1/2

where k is now

k = (qp'ioS/AW)eOo/b (64a)

Let e~ ~/b y, dy/dATI - (a/b)eaZ ]/b (a/b)y. Then, separating and inte-

grating,
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x d(ATq)

o fa r /bl

x dy

o (a /b) y .71

=(b/a)2 tan- ( ' 77) + C

- (2b/a) tan- I (e I/b-l) 1/ 2 + C

When x - 0, A - 0, therefore C - 0 and

a6TI /bl )2
e -I - (tan x j- 2b

or

(a /b) (T so-) 0 ln[ (tan t -/2b) 2 + I] (65)

Differentiating with respect to x,

(a/b)dI/dx - 24 k/2b tan(x'k-a/2b)

Since i - (AW/qp')(di/dx)x=t

i = (AW/qp') 12kb/a tan(t -/2b)

= 4(AWi 0 S/qp')(2b/-) eoM°/2b tan(.qp'i0S/AW)(a/2b)t
2 ea q °0/ 2 b) (66)

This is the explicit relation between i and To while equation 65 allows Tj to

be calculated. They can be expressed in convenient parameters by noting that

the total exchange current density of the electrode is i = i St, while the0 0

resistance of the thin film of electrolyte (for 1 sq. cm. of electrode face)

is qp't/AW - p say, then

i - 4(1o/p)(2b/a) e cc /2b tanU(i 0 p)(a/2b) e 0 °/2b) (66a)
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For low values of the tan, that is, low values of e'o/2b (and current), tan

x - x, therefore

o /e
0

and rs = Io" This is the required logical result, since we assumed an

irreversible Tafel form as our basic equation. As the tangent becomes large,

from equation 65, neglecting the 1, tan = exj(a/2b(T -TIo)] and

i = q(iol p)(2b/l) eCns/2b

This is the corresponding form to equation 45. The full form of the equation

can be computed considering as parameters pa/2b = r say, OMT/b - I, then

i = 7 e'O/2 tan( i r e 0/2)

s-Th - In[(tan NTr e°/2)2 + 1]

or

i/i = (i/A)elio
/ 2 tan(AeTo/2)

0

S -To = 2,3 log[(an(Ae i°/ 2 ))2 + i]

where A =4-0r (dimensionless)0

When NIor eTO2 = r/2, the tangent is infinity and 7s iS infinity. There-

fore the maximum value of 7o for a given system is given by

( oImax = 2 ln(7T/2- ior) (67)

(ro)max cannot be small, since we have assumed an irreversible reaction,

therefore equation 67 only applies when o is greater than about 2.

The forms of the results are shown in Figure 7, where i/i is plotted

versus 7o , s for various values of o r. [The order of magnitude of r can be

decided by taking qp' as of the order of 10, A as of the order of 10 , t/W as

in the range 10 to 1000 and a/2b as approximately 10. Then r would be expected
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to range from 1 to 100.] As expected, for a given value of i0, adecrease

in the value of r gives a lover polarization at high current densities and

a more extended true Tafel line. The current density at which the double

Tafel slope line takes over is higher. Alternatively, for a given value of

r a bigger exchange current has the same effect.

4.3. Thin Film Model: Hydrogen Fuel in Alkaline Electrolyte

In strongly alkaline electrolyte the reaction probably

involves hydroxyl (14)>, as follows, -

[H] + OH' -,H 20 + e

In this case we do have an ionic reactant from the electrolyte and

therefore we would expect mass transport of OH' in the thin film to be a

critical factor. As in the case of redox reactions, the concentration of

the hydroxyl ion will tend to zero at x = 0 and equation 33 (and its reduced

forms) may apply. It should be noted that the thin film of electrolyte may -

have a low conductivity due to its narrow cross-section. However, the

effective mass transport of ion in the thin film will also be low, by exactly

the same ratio. Therefore, what was said before about the relative effects

of mass transport to ohmic effects will still apply (see section 3.4.1).

The ohmic effect should be considered as a disturbance of the basic relation

of equation 33, and it will give somewhat higher total polarizations than

predicted by equation 33. The effect will be most marked at high current

densities, therefore it leads to a more gradual approach to the limiting

current than expected.

The relative ease of mass transport at the exterior to that in the

interior, 7P, is given for the thin film model, by

= qt/8AW (68)

Comparing with equation 32, it is seen that E is replaced with AW. AW

cannot be greater than E. For A = 10 3, W = 1 micron, AW is 1/10. This

compares with a value of E of about 1/3. Of course, W might be considerably
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less than 1 micron.

4.4. Non Thin-film Model: Saturated Electrode

Another physical model which might be applicable under

certain conditions is one where no extended thin film exists. This would

apply to a fully saturated electrode. In this case the reactant gas has

to diffuse into the electrolyte in the macropores. When current is drawn,

the reactant gas in the interior will be rapidly used up and the reaction

will be concentrated at the gas-electrolyte face. Ohmic polarization

increases from this face towards the bulk electrolyte and this will have

the effect of speeding up internal reaction, giving rise to low internal

dissolved gas concentrations, which again means that the reaction is concen-

trated towards the gas entry face. This is opposite to the ionic mass

transport case, in which the concentration of reactant ion decreases from

the free electrolyte face back into the electrode. For the ionic case,

reaction is concentrated at the electrode-bulk electrolyte face and conse-
quently the path of the current-carrying ions does not penetrate deeply

into the electrode. For the dissolved gas case, the current-carrying ions

have to travel right through the pores of the electrode to (or from) the

reaction site and, therefore, ohmic effects within the pore electrolyte are

much greater than for the ionic case.

Let us consider the case where the electrochemical reaction is reversible,

where the principal mass transport effect is that of dissolved reactant gas

and where the dissolved gas has to diffuse linearly along the axis of the

pore. If the concentration of dissolved gas is R, and the equilibrium

concentration at the gas pressure used is Rb,

ff= (RT/nF) ln(Rb/R)

If D is the effective diffusion coefficient of dissolved gas,

di/dx - nFD(d 2R/dx ) (69)

Also

i - (l/p) drI/dx
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The boundary conditions are i = 0 at x = 0, R = R at x - 0 and it

-nFD(dR/dx)x=o , where it is the final current density. Integrating

equation 69 from x = 0 to x = x,

i = nFD(dR/dx) - nFD(41R/dx)x.0 = i t + nFD dR/dx

Therefore,

d) = pitx + pnFD dR

Integrating from x - 0 , i = o to x = t, ) =T1

1-110 = pnFD(R-R ) + itpx

or

R/R ° = 1 - (itx/nFDR0 ) + (rI-Io )/(pnFDR0 ) (70)

The measured polarization, at the electrolyte face of the electrode, is at

x - t, therefore

e-nil/b = (Ro/Rb) (R/Ro)

- (Ro/Rb)[l - (it/nFDR0 ) + (rj-Io)/(pnFDR0 )]

or

i = (nFDRb/t)[(R o/Rb) -e - n /b) ] + (1-I1)/tP (71)

If there is no gas mass transport limitation to x = 0 then R o/Rb  1 and

10 0. Then

i - (nFDRb/t)(1 - e - n / b ) + Tj/tp (71a)

When Tj is small,

i = 7)[(i/tp) + (n 2FDRb/bt)]

- (1/tp)TItl + (pn2FDRb/b)] (71b)
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Thus n is linearly dependent on i. tp is the ohmic resistance of the

electrolyte in the pores, therefore the effective resistance is less as

the mass transport of dissolved gas is greater. For strongly conducting
-2

electrolytes the factor pnFDR b/b is of the order of 10 M, where M is the
molar concentration of dissolved gas. Since M is low, the term containing

Rb is normally negligible. The physical meaning of this is that the dis-

solved gas mass transport is so slow that the reaction occurs in a thin

layer near x = 0. Then all the current has to traverse the complete

thickness of the electrode and the ohmic voltage drop is the maximum

possible.

When 11 is large, equation 71 goes to

i = (nFDRo0/t) + (I- o)Itp

For dissolved gases and strongly conducting electrolytes the term in R iso

negligible and

i(tp) = n-no (72)

This, of course, is the expected Ohm's law relation. The total polarization

is made up of an ohmic part, n'no) and a mass transport part no. The mass

transport part may consist of diffusion through a thin film of electrolyte to

reach reaction surface at x = 0. If so, the limiting current will be small.

If no thin film exists, then electrolyte at x = 0 is in equilibrium with the

reactant gas pressure at the electrolyte surface and the mass transport

limitation will be that of gas transport to the surface. However, since the

reaction is concentrated more and more into a thin layer at x = 0 as ohmic

polarization increases, the true current density becomes high and activation

polarization may be encountered.

4.5. Surface Effects.

When a catalyst is impregnated or plated onto the internal

surface of a porous electrode, its principal effect is to increase the

exchange current of the reaction involved, which forces the system towards
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a pure mass transport-ohmic polarization condition. This condition represents

the best possible performance obtainable with the given electrode structure.

Once this condition is reached, improved catalysis of the reaction will have

no further benefit. Electrode performance can then be improved by making

the electrode thinner and more open, thereby reducing internal mass transport

and ohmic limitations. But, by doing this the effective catalytic area is

reduced so that activation polarization may again come into play. For the

thin film model of a gas diffusion electrode, reducing the thickness of the

electrode beyond a certain limit may reduce t, the length of the thin film.

Polarization at low currents is then reduced but the limiting current

becomes less. Clearly, design of the optimum electrode requires the balancing

of a number of different factors. At present, the theories described above

have not been sufficiently investigated experimentally to show if they are

correct. Also, the important parameters, such as t/W, have not been deter-

mined.

When a catalytic surface is micro-roughened, the principal effect is

again that of increasing the effective exchange current. A secondary effect

may be that the roughened surface holds electrolyte, thus giving a greater

cross section of electrolyte for ionic mass transport and ionic conduction.

The gas diffusion limiting current would still be determined by t/W, but

ionic mass transport and ohmic polarization effects would be smaller. If

this were true, it might be possible for W to be very thin, giving large

limiting currents, without the ohmic resistance, for example, tending to

large values. This would appear to be a more refined model well worth

investigating.

Several surface chemistry effects can disturb some of the analysis

described. Firstly, some of the work is based on the applicability of a

simple Tafel equation for the reaction studied. If several steps in the

over-all reaction proceed at comparable rate, then the rate equation is

more complex and the form of the rate equation may change with current

density. However, it is often found that the Tafel equation applies over

wide ranges of current density. Secondly, the Tafel equation does not



-44-

always take into account the variation of the amount of surface complex with

conditions. Since the electrode reactions are surface reactions, the

activities of covered surface and bare surface should appear in the rate

equations. Where gas adsorption-desorption is involved, the change in

surface coverage can lead to limiting currents of chemisorption or de-

sorption. Since the Tafel equation is found so often, it might be postu-

lated that the complex, for redox and gas reactions, has a Temkin isotherm

for its surface coverage versus heat of reaction relation. In this case,

large changes in current density can occur with only small changes in

surface coverage (14)..

(5) UNSTEADY STATE REDOX SYSTEMS.

5.1. Introduction.

The unsteady state relations for porous electrodes have not

received much study. It would appear reasonable to obtain experimental

confirmation of the simpler steady state relations before spending much

time on the unsteady state theory. For a redox system, as in Figure 1,

we can assume as a first approximation that ohmic gradients within the

pore electrolyte are small.

Considering an element dx, the rate of build-up of reactant is

E(R/,t)dx (t being time). The sum rate of diffusion of reactant into

the element is D( Z2RIx 2)dx, where D is understood to be an effective mass

transport factor. The rate of conversion of R to P in the element is given

by

di f /nF = (1 0S/nF)[(R/Rb)eOt/b . (P /Pb)e- (1 )n/b] dx

i is the faradaic furrent. Then
f

The curor e/b e t a t- (t-e)n b/by
ehRbt - D ;/ 0-(iS/nF)[(R/R b) -p/be (73)

The current density at time t is given by
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i f + ic

d
= f dif + Cd1j/dt

0

d is the thickness of the electrode, ic is the capacitative current, C is

the capacity. The boundary conditions are ( R/x) = 0 at all valuesxuo

of t, and D( R/ x)x-d = Db( R/ y)y=o , where Db is the effective mass

transport factor in the free electrolyte and y is distance into the

electrolyte from the electrode-electrolyte interface.

Clearly, the complete solution of these equations for a number of

initial conditions is not easy. However, two simplified cases can be

readily examined.

5.2. Large Applied Current

Consider a redox electrode at open circuit with uniform

concentrations throughout. Let a large constant current (greater than the

limiting current) be applied to the electrode. For short periods of time,

the fresh reactant diffused in from the exterior will be small and the

current will be supported mainly by the existing reactant in the interior

of the electrode. The system is as illustrated in Figure 8. Let us

assume that the concentration of reactant in the interior is constant

with x and thus goes down as a horizontal line in Figure 8. Assuming

negligible reactant transfer into the electrode from the outside,

i = Cdj/dt + if = constant applied current

E dR/dr= -( 0S/nF)[(R/Rb)

if . ioSd[(R/Rb)e On/b(P/Pb)e-(L-a)T/b

Then,

dR/dt = -(i - CdTj/dt)/EnFd (74)

Integrating from t - 0, R - Rb, 11 - 0 to t - C, R - R, 11 =1,
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R -R = (it/dEnF)-(Cj/dEnF) (75)
b

or

R/Rb = 1 - it/dnFRb + C1/denFRb (75a)

Polarization becomes large when R/Rb << 1 and a "transition time" r

can be defined by this condition. Then

T= (dEnFRb/i) + (CI/i) (76)

Then R/Rb = (i/d nFRb)( -t) (75b)

For example, consider d = 0.1 cm., E = 1/3, n = 1, Rb - 0.1 M,

T N 0.3/i + Cil/i

For a charge current density of 0.1 amps per sq. cm. and a capacity of

10 41F per sq. cm. (= 10 5 F per cubic cm. in this case), and assuming that

the transition time is reached by the time ) - 1/2 volt,

n 3 + 1/20 secs.

Under these conditions the effect of double layer capacity on the transition

time is negligible. In 3 seconds, mass transport from outside the electrode

will be fairly small.

The voltage-time relation is obtained by substituting for R/Rb from

equation 75a to give

i = Cdr/dt + 1oSd [ (i/dEnFRb )(T-t)ecqn/b-(P/Pb)e- (1a)T/b ]  (77)

This cannot be usefully integrated over the entire range. However, some

limiting cases can be considered.

Case 1. Low Exchange Current Reaction, Irreversible Conditions.

Consider the period of time when the capacitative current is small

and Cdr1/dt is small. This applies when the faradaic current is small until

a fair amount of polarization is present: the initial current is then mainly

capacitative until this polarization is reached. When the reverse reaction
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term is negligible,

i iSd[(i/dcnFRb) (t) ]e O,/b

Replacing denFRb/i by t(when C'q/i is negligible near the transition time)

(b/a)ln(i Sd/i) + (b/a)ln(l-t/T) (78)

Thus a plot of Tj versus log(l-t/T) is a straight line and an can be obtained

from the slope and i Sd from the intercept. [If C is known, t can be corrected

for C1 and i for Cdrl/dt.1

As t approaches the transition time and the polarization becomes large,

reaction on the external surface will start to carry current. This in turn

will have a transition time, defined in the usual way by

= (Rb/ 2 i) 2(nF) 2DT

2
Under the conditions used before, that is, Rb = 0.1 M, i = 0.1 amps/cm.

and assuming D to be about 10-5 cm. 2/sec., -r R 0.075 seconds. Thus the

extension of the total transition time due to the external current is small

under these circumstances. However, the second transition time is proportion-

al to (Rb/i) 2, whereas the first is proportional to Rb/i. If Rb/i is made

too large, then the disturbance of the transition time of equation 76 by the

external face current may be excessive. It can be made negligible if d, the

thickness of the electrode, can be varied to suit our purposes.

An estimate of the effect of mass transport into the interior can be

made as follows. Consider, as before, that the concentration R in the porous

electrode is constant up to the face. Then the rate of mass transport into
I

the interior is, in the usual manner (19), given by

dQ/dt = (Rb-R)(D/) 1/2/tl/2 gm. moles (79)
2

cm. sec.

Q is the total amount transported in time t. The total mass transport in

time T is

,This corresponds to the linear, seni-infinite heat transfer case of a block
of material initially at uniform temperature Rb, with a fixed temperature
of R applied to one face.
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Q = 2(Rb-R) (D/7r) 1/2 TI/ 2  (80)

But R is changing with time as given approximately by equation 75 and

applying the principle of superposition,

1/2 1/2
Q = f 2(D /7r) (T-t) d(Rb-R) (81)

0

Substituting for Rb-R from equation 75 (neglecting the capacity term)

Q - f T2)/r)1 /2(T-t) 1 /2(i/dEnF)dt
0

= (4/3).(D/7r) 1/2 (i/deF)T3/2 (82)

The total charge corresponding to Q is nFQ, while the charge corresponding

to i is iT. Therefore,

nFQ/iT = (4/3)(D/7r)1/2 (1/dE)r1/ 2  (83)

Taking D as 10-5 , d as 0.1 cm., E as 1/3 and r as 3 seconds,

nFQ/iT -, 127..

Thus a nominal transition time of 3 seconds would actually give rise to a

transition time about 10% in excess of three seconds. This predicted

disturbance is probably too high, since in practice part of the concentration

gradient occurs within the solid rather than within the free electrolyte, and

the effective diffusion coefficient within the solid is 1/5 to 1/10 of the

free value.

Case 2. Reversible Reaction.

For a reversible reaction the voltage-concentration relation is

TI = (b) ln[ (Rb/R)(P/Pb)]

Since we are assuming negligible diffusion in or out of the electrode R + P -

Rb + Pb and
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= (b)ln[(Rb/R)(Rb + Pb" R)/Pb]

or,: if Rb/Pb 

= (b)ln[(R/Rb)/(1 + y R/Rb)]

Substituting from equation 75b, assuming the capacity term in equation 76

is small,

-i - (b)ln[(l-t/T)/(l + y - y (1-t/ ))j (84)

For y not large and t -+T

-j 2 (b) ln[ (1-t/r)/(l + y)] (84a)

Again, a plot of log(l-t/T) versus 'q should be a straight line. In this

case t is zero where 71 is nearly zero, whereas in equation 78, the extra-

polation to t - 0 does not give a value of Tj near zero.

5.3. Current Interruption.

Consider a redox electrode operating at a steady current,

with negligible internal ohmic polarization. When the current is shut off

suddenly, the electrochemical reaction will continue and will charge (or

discharge) the electrical double layer until reversible conditions are

obtained. The relations are now

i +i = 0
cf

ic = C(d j/dt)

Case 1. Irreversible Reaction.

The relation of faradaic current to polarization is, as before,

dif = i S[(R/R b)ecM/b]dx

For negligible internal ohmic effects, this can be written as
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d

if i S e /b f (R/Rb)dx
0

For a short period of time after current shut-off, the values of R/Rb will

be essentially constant due to the slowness of mass transport, Then,

C¢/t + ios eOM/bf(R/Rb) x = 0

Separating and integrating, with is for the steady current polarization,

(ioSf(RRbd l/Cb)t eCqs/b _ ea(Ts "T) /b - 1 (85)

When ils-i is large,

-i - (b/a)lnt + (b/a)ln[(a/Cb)ioSf(R/Rb)dx] (86)

A plot of Tj versus log t is a straight line. If no concentration gradients

exist then equation 86 is the usual equation (14), with ioSd as the exchange

current. If R/Rb does vary, then it is convenient to introduce the pre-

interruption current i,

i ios e /b /Rb) dx

Then

s - = (b/a)lnt + (b/a)ln[(a/Cb)i] (86a)

The extrapolation to Ils-7 = 0 gives

t = Cb/ai (87)

C can be estimated if no is known.

The equations can only apply at short times, before appreciable mass

transfer occurs, for highly irreversible reactions. It should be noted

that any ohmic polarization in the electrolyte decays with time according

to the decay of if* If 6Tl is ohmic polarization, it is readily shown that

n (a/b) -Ts) (88)
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Figure 9 illustrates the general shape of the curve.

Case 2. Reversible Reaction.

As discussed previously (see section 3), a completely reversible

electrochemical reaction with negligible internal ohmic effect has a uniform

concentration throughout the solid. When current is shut off, reactant

diffuses to the surface and tries to decrease the concentration polarization.

But this change in polarization drives product in the interior of the

electrode to reactant. An electron balance requires that

electrons taken up per second by P -+ R in the interior of the

electrode - electrons produced per second by R - P at surface

of electrode = CdTj/dt. (89)

The situation can be envisaged as in Figure 10. As time progress R increases

and P decreases towards the equilibrium bulk concentrations. It is clear from

equation 89 that we cannot consider the reaction at the surface to be zero

when the current is interrupted,

The mathematical analysis of this situation has not yet been completed.

(6) QS PHASE TRANSPORT.

6.1. Introduction

For a porous electrode fed with gas at one face, it is always

possible that gas concentration gradients exist within the pores of the

electrode. Although mass transport of ions or dissolved gases in the electro-

lyte will normally be slower than gas mass transport, the system may be such

that long gas diffusion paths exist compared to short paths in the electrolyte.

It is also possible that concentration gradients exist due to gas transport to

the face of the electrode, since practical fuel cell assemblies will use thin

electrode jackets which will probably put the gas flow in the laminar flow

regime. In this section we will be concerned with concentration gradients

within the porous electrode, between the gas entry face and the electrolyte

at which utilization occurs. Two limiting cases occur, gas diffusion at

constant pressure and gas permeability with varying pressure.
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6.2 Gas Diffusion.

In the consideration of gas diffusion through porous media,

two principal types of diffusion can be distinguished. Firstly, there is

normal diffusion in which one gas diffuses through another, with negligible

influence of the pore walls on the rate of diffusion. This applies when

the mean free path of the molecules is much less than the pore diameter.

Secondly, when the mean free path of the molecules is much greater than

the pore diameter, Knudsen diffusion occurs. In this case, the resistance

to mass transport is due to collisions with the walls and the presence of

other gases has little influence on the diffusion of the component consider-

ed. Some specific cases are as follows.

Equimolar Counter-Current Normal Diffusion of Reactant and Product Two

Components.

The notation and presentation follows that of McCarty and Mason

(20).. Let J be the molar flux (moles per sq. cm. per second) of gas 1

and J2 the molar flux of gas 2 (in the same direction). The equations of

diffusion for one dimensional diffusion are

1l = -D1 (dn1 /dx) + nlv

22 = -D2(dn2/dx) + n2v (90)

3
n1, n2 are the concentrations in moles per cm. and v is the velocity of

bulk flow. Since the mass of one gas diffusing in one direction does not

in general equal the mass diffusing in the other direction, a definite net

mass flow in one direction is present. The velocity of flow is the net

mass flow divided by the density (nl m + n 2m2 in this case, where m1, m2

are the respective molecular weights). This net flow must, of course, obey

the laws of fluid dynamics. The diffusion coefficients in equation 90 are

quite arbitrary; they are defined by equation 90, and they may be concen-

tration dependent. J 1  -D1dn1/dx only when v = 0, therefore the D values

are equi-mass diffusion coefficients. In other words, we can consider a

mass flow along the axis, carrying nl, n2 with it. If a plane is moved
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along with the fluid, at velocity v then the diffusion rates of components

1 and 2 with respect to this plane are given by -D1dnl/dx and -D2dn2/dx

respectively.

To procede further we must consider the fluid dynamics of the mass

transfer. For one dimensional transport the equation of motion is (21).

ap/6x + &t/6y + pv~v/6x = 0 (91)

p is pressure, T is viscous force, p is density. The pressure term represents

the driving force, the viscous term represents the viscous resistance and the

density-velocity term represents the bulk momentum term. For low values of

p and v and negligible viscous force, 6p/<x is small. If we assume this to

be true, then n1 + n2 - constant - N say. For steady state conditions, then,

n 1/dx - -dn 2/dx and equation 90 goes to

J1 M -D1dn1 /dX 
+ n1v

12 =  D2dnI/dx 
+ n2v

For equimolar counter-current mass transfer J = -J2 and

0 - -(Di-D 2 )dnl/dx + v(n1 + n2)

or
v = (l/N)(Di-D 2 )dn 1 /dx

Substituting into equation 90,

J1  -[(n 2 IN)D 1 
+ (n1/N)D2]dn 1 /dx (92)

or
Jl = -D 2dn /dx (93)

D12 is the conventional equimolar binary diffusion coefficient of kinetic

theory and is independent of the partial concentration of the components.

We see, therefore, that in this case the mass transport of reactant can be

represented by a Fick's law form, equation 93. The effective D12 for a
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porous electrode, based on unit geometric area, is smaller than the true

diffusion coefficient because the effective diffusion area is the porosity.

In addition, if dx is linear dimension, the actual path length is qx, where

q is a tortuosity factor. Thus, as before,

(D12)effective = D1 2 E/q.

For a diffusion path of t from the entry face to the reaction zone, equation

93 can be integrated in the usual way to give

n o-n t = (1/Dl12)e (ti/nF)

The limiting current is

i nFnoD l2e/t (94)

Then ntIn°  1 - i/i L
nt /o L

It should be noted that this is an approximation which applies at relatively

low rates of mass transfer, since viscous forces have been neglected. Negligible

pressure gradient exists in the electrode.

Two Component Non-Equimolar Normal Diffusion

Equation 90 can be expressed as

1l. -D12(dnl/dx) + (nl/N)J (95)

J- I + 2 " net molar transport. With the same assumption as before, that

negligible pressure gradient exists (therefore N - constant) even though net

mass transfer is occuring, this equation can be integrated if the flux ratio

J /J2 is known. An important case is that of a two component gas mixture in

which one component reacts to a non-gaseous product and the other component

is inert. Air reacting at an oxygen electrode is an important example. In

this case, at x - 0 the respective concentrations of reactant and inert are

nlO and n20, say, J1 is the rate, while J2 is zero. Then
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or = -D12 dnl/dx + (n1/N)J1

or

Jl = -D 1 2 (i/(l-n 1 /N))dn1 /dx

Integrating from x 0 to x = t,

J1 = (D12 /t)N ln[(l-n 1 /N)/( l -n1 0/N)]

or
J1 

= (D 1 2 /t)N inKN-n I)/n 2 0 ] (96)

where n1 now refers to the concentration at the reaction site. The limiting

current is nFJ I or

iL = (nFD 1 2 /t)N ln(N/n 2 0 ) (97)

3
N is in gm. moles per cm. , and at I atmosphere and room temperature it is

about (1/2)10 -4 . Equation 97 can be put into a form comparable to a simple

Fick's law form modified by a correcting factor,

iL = (nFD 12 /t)n 1 0 f (97a)

where

f - (N/n10 )2"3 log(N/n 20 )

The values of f as a function of the molar fraction of inert present are

shown in Table 1.

Table 1. Correction to Fick's Law When Inert Gas is Present.

Molar fraction of inert Correcting factor
in bulk gas stream

n 20/N f

1.0 0
0.9 0.0105
0.8 0.0446
0.6 0.204
0.4 0.550
0.2 1.285
0.1 2.07
0.01 4.55

0.001 6.91
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For air, with a mole fraction of nitrogen of 4/5, the correction factor is

about 1/5, therefore the limiting gas diffusion rate is 1/5 of that expected

from a simple Fick's law form with 1/5 partial pressure of oxygen. Oxygen

with less than afew%inert impurities would give an f of about 5, therefore,

at the same total pressure the oxygen would give a limiting diffusion rate

about 125 times larger than air.

As the percentage of inerts is reduced the limiting diffusion rate

becomes very large, tending to infinity. However, it is important to note

that this is a spurious prediction for flow through porous materials. The

case of zero impurity is the same as mass transport of one gas, the reacting

gas, with no other component present. This clearly becomes a permeability or

bulk flow system when the rate of flow becomes high. Thus an upper limit is

set to the applicability of equation 97 by the corresponding permeability

limited rate of transport (see 6.4). The breakdown of equation 97 under these

conditions is obviously due to the neglect of viscous forces in its derivation.

To estimate values of limiting diffusion rates it is usually sufficiently

accurate to remember that D lI/P, P being total pressure;Dl2 oc T1 .75 , T

being absolute temperature; and D1 2 oc l(i/m1) + (1/m2), ml, m2 being the

molecular weights. Thus, assuming D1 2 to be about 0.1 cm.
2 /sec., t = 0.1 cm.,

I atmosphere and room temperature, n = 2, and E/q to be about 1/10, then

iL (n10 /N)f amps./sq. cm. Thus for equi-molar counter current diffusion

(f 1 1) and a molar fraction of reactant near 1, iL 1000 amps./sq. cm.

This figure is, of course, very sensitive to t, the thickness of the diffusion

path through the electrode. For air at the same conditions, n = 4, n1 0/N - 1/5

and f - 1/5 therefore iL a 80 amps./sq. cm. An increase in the pressure of air

does not produce a proportional increase in the limiting current because although

nl0 increases proportionally (and f remains the same), D1 2 is inversely

proportional to total pressure and the pressure increase effe is cancelled

Out.

Knudsen Diffusion

When the mean free path for the diffusing molecule is greater than the

pore radius, collisions with the walls provide most of the resistance to
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transport. The presence of other molecules will thus have little effect on the

mass transport and we would expect the diffusion coefficient to be independent

of total pressure and partial concentration, but dependent on the size of the

pores. The steady state of motion is equation 91, that is,

p/ x + 2M/ay + pv~v/ x = 0

For Knudsen diffusion where the viscous forces occur at the surface, v is

constant with y except at the surface and v is the mean mass velocity defined

by nv = J, n being the molar concentration, J the molar flux. Usually, the

velocities of flow through porous media are low, and the density is low, so

that the bulk momentum term (or kinetic energy term) is negligible compared

to the viscous force.

The viscous forces are due to the change of momentum of a molecule

striking the wall. The loss of momentum, in the direction of flow, per

sq. cm. per second gives a force

F = (i/4)nCmvf

where f is the accomodation coefficient. Substituting J/n for v

F = (i/4)CmJif

From the equation of motion, for a tube

2
r dp/dx = -(I/4)JmCf2irr

J - -(2r/mcf)dp/dx (98)

or

J = DK dn/dx (98a)

where DK , (2/3)rC

Thus DK is proportional to r, to I-, and to 1/J-m but independent of

pressure and the composition of other gases present. Integrating equation 98a,
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i L = (nFDK/t)nlO (99)

In this case, an increase of pressure increases n10 but does not decrease DK

therefore the limiting current increases. It should be noted that Knudsen

diffusion and Knudsen permeability are the same physical process, when only

one component is present.

6.3 Permeability

When a single gas is flowing, in laminar flow, through a tube

of diameter d, the relation between flow rate and pressure drop is (18)

pll= (d 2/321j)(p)(Lp/L) + (5Cd/3)(Lp/L) (100)

4, is the linear velocity at pI, n is the viscosity, p is the arithmetic mean

pressure over length L, Zp is the pressure drop over length L, 5 is a constant

close to one and C is the mean molecular velocity. The first term in the RHS

of the equation derives from Poiseuille's formula, while the second term is

the slip flow term. This arises from Knudsen flow within a mean free path of

the wall which changes the effective viscosity. As d becomes small the

equation reduces to the Knudsen equation, with an appropriate value of & of

8 0. As d becomes large, 5 changes somewhat from 5 but the slip flow term

becomes a smaller fraction of the total until a pure Poiseuille's equation

is obtained. For non-circular flow paths, the diameter can be replaced by

4Mk, where M is the mean hydraulic radius and k is a constant for a given shape

but varies with different geometries; k is close to 1. Making this substitution

and rearranging, equation 100 goes to

2
Pl'l = (M /k)lp/)(p/L) + (M/k?(C)(Ap/L) (lO0a)

ko, k are constants. As will be seen later, the constants characterizing the

geometry and pore size are not known for flow through porous media and they

have to be determined experimentally, therefore we will use the equation in the

form

plul = B0 (p/1) (Lp/L) + K C(6p/L) (fOOb)
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When the slip flow term is negligible, B0 is the permeability coefficient

(in darcies for Tj in centipoises and p in atmospheres) and replacing plul

with JRT, p with NRT,

J = Bo(pl/) (,N/L) (lO0c)

As before, J is the net molar flux density, N is the total molar concentration.

For a one component system, pure reactant transporting to the reaction site,

for example, J = Jl and the limiting current is obtained when LN = N. Then

p = P/2, where P is the total entrance pressure and, using t in place of L,

iL = nF(Bo/j) (P/2t)N (101)

6.4. Comparison of Diffusion and Permeability Limitations.

We can now compare the predicted limiting currents for an

almost pure reactant transporting through an electrode with no gaseous

product. The equations are 97 and 101, that is,

iL - (nFD 12 /t)N ln(N/n 20)

and

i L = (nFBo/tj)N(P/2)

(n20 is the percentage of inert in the feed stream.) The smaller of these

two limiting currents will be the best approximation to the actual limiting

current. Comparing the two values

iL diffusion/iL permeability

= TD1 2 ln(N/n 2 0) /Bo(P/2) (102)

For example, let us consider DI2 effective to be about 0.01 cm. 2/sec., 11 to
be about 100 micropoises, P to be 1 atmosphere and n20 to be 1/10 per cent.

Then
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iL diffusion/iL permeability

(10 , 2 ) (lO - 2 ) (2.3) (3) (2)/B 0

10-3 /B (102a)

Permeability coefficients of 0.1 to 0.40 have been reported (22) for porous

carbon electrodes. Thus it is concluded that diffusion will almost certainly

be the mass transport limiting mechanism for porous electrodes.

B is related to the viscous area and flow path in a porous solid. In0

equation lOa, uI is the true velocity, whereas the value of J is based on

the external face area. The actual open area for transport is E and the

actual path length per unit thickness is q, therefore the true rate of flow

in the solid is Jq/E. Thus, neglecting slip flow and assuming k°  2, equation

100a can be expressed as

2 2
J = ( )/q (M /2) (p/j)LN/L

For rj in centipoises, p in atmospheres (1 atmosphere - 106 dynes/sq. cm.)

B 0  (E/q 2)(M 2/2)(10 8) darcies (103)

M is the effective mean hydraulic radius defined by equation 103. It is

constant for a given material. If the pore size of the material does not

vary widely, M can be approximated by an overall hydraulic radius defined by

total cross-sectional area divided by wetted perimeter = C/A, A being as

before, the perimeter area per unit volume of electrode. Thus for A = 103

cm 2/cm 3 = 1/3, q = 2, B 0  1/2 darcy. Again, we must conclude that

equation 97 is the equation which will be applicable.

In general, then) we may assume that the mass flow associated with net

mass transfer can be accomplished with virtually zero total pressure gradient

in the electrode and that the equation to be solved for any specific set of

conditions is equation 95, or a multicomponent equivalent of this equation

(23).

I
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6.5 Combined Normal and Knudsen Diffusion.

Since diffusion is the predominant factor to be considered,

and since electrodes containing very fine pores may be used in some circum-

f stances, it is worthwhile to investigate the combined effects of the two

types of diffusion. If it is assumed that the pores of different sizes are

highly interlinked and randomly arranged, then it can be assumed that the

path of any molecule through the solid will involve essentially the same

resistances to flow as the path of any other molecule. Over a short element

dx we can envisage part of the resistance to flow being caused by Knudsen

effects, giving dnlk concentration drop for flow JI.

An effective Knudsen diffusion coefficient Dlk can be defined by

Jl =-Dlk(dnl/dx)k

Similarly an effective normal diffusion coefficient can be defined by

J1  -Dl2(dnl/dx)N +(nl/N)J

The total pressure drop over dx is dnlk + dnlN and dnI/dX - Onlk + dn1N)/dx.

Therefore

-dnl/dx - 1_+ (n/NDl
+ D 2 -)l ( 1/N 1 2)j

Thus,

Jl -(I/(D 1 + D -i))dn1 /dx + (nl/N)J(I/D 12 ( DII + D1

12 1k 12 1k

(104)

or,

J = -DI dnl/dx + (nl/N)J5 (104a)

For Dlk >> D 12 D 1 D2 effective 8 = 1. For D1 2 >> Dlk lk effective,

8 -4 0. Thus D1 , 8 will change with the absolute pressure of the system. If

the molar flux ration Jl/J2 is known, then, since J = Jl + J 21 j can be replaced

in terms of J and equation 104 can be integrated as before for a given set of

circumstances.
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(7) FUTURE WORK.

This report lays the theoretical grc=und work for a number of inter-

esting investigations. Examination of the derivations of the equations shows

the assumptions involved and it is then relatively easy to set up simple

experimental systems which approximate as nearly as possible to the conditions

required. From a study of such systems it s1-ould be possible to extend the

work to practical fuel cell electrodes. In practical systems it is inevitable

that more complex conditions will exist. ForT_ example, the flow of reactant gas

across the face of an electrode may lead to -oncertration profiles across the

face, with the exit gas at a lower concentrat-in. Even if the flow is slow

enough that free space diffusion will even otmt this concentration, each cell

in a battery of cells will operate with a different feed concentration. Again,

it is possible that high output cells will nwt operate at isothermal conditions.

Some of the equations derived here are bweing investigated in this depart-

ment, but not enough experimental results hav-e been obtained to date to warrant

their discussion. Will (12) has apparently proved the validity of equation 63

for a partially immersed platinum wire, with hydrogen fuel and sulphuric acid

electrolyte. Allowing for what is certainly a misprint in the abstract, the

form of equation he quotes is identical to th-atof equation 63.

It is to be expected that the next few y ears will see the development

of completely adequate theoretical and experiinental descriptions of the steady

state porous electrode, and at least a partia ldescription of unsteady state

situations.
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Figure 3. Illustration of Double Layer Electrode

Reacting at One Face.
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